Thermal Power Plants: Sources of conventional energy and method of harnessing, special features and cycles used in steam, gas and diesel power plants, combine cycle systems and cogeneration. Location of the above plants and selection of units, prime movers and associated equipment. Hydroelectric Power Plants: The plants and their equipment, layouts, run of the river and accumulation type station, types of hydroelectric turbines and their stations. Nuclear Power Plants: Nuclear reaction, fission and fusion reaction, critical mass chain reaction, moderators, reactor control and cooling, classification of reactors, different types of reactors, radiation damages, shielding of grays neutrons, materials for construction. Thermoelectric Generators: Thermoelectric effect, solid state description of thermoelectric effect, analysis and design of thermoelectric generators, figure of merit, device configuration, solar and radioisotope powered generators, applications. MHD Generators: Gaseous conductors, analysis and design of MHD generator, problems associated with MHD generation, possible configuration. Photovoltaic Generators: Radiation principles, optical effects in semiconductors and PN junction, analysis and design of converter, fabrication of cells, solar cells in space. Fuel Cells: Thermodynamic principles, efficiency of fuel cell factors limiting the performance, design, new development in fuel cells, possibility of future use in electric vehicles. Wind power generation.

Course Syllabus